Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death
نویسندگان
چکیده
Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO's increasing number of differentiated neurons in OHSC. In conclusion, CO's increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO's effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies.
منابع مشابه
Chronic treatment with a carbon monoxide releasing molecule reverses dietary induced obesity in mice.
Chronic, low level treatment with a carbon monoxide releasing molecule (CO-RM), CORM-A1, has been shown to prevent the development of obesity in response to a high fat diet. The objective of this study was to test the hypothesis that chronic, low level treatment with this CO-RM can reverse established obesity via a mechanism independent of food intake. Dietary induced obese mice were treated wi...
متن کاملAntioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells.
Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the ...
متن کاملCORM-A1: a new pharmacologically active carbon monoxide-releasing molecule.
Carbon monoxide (CO) is emerging as an important and versatile mediator of physiological processes to the extent that treatment of animals with exogenous CO gas has beneficial effects in a range of vascular- and inflammatory-related disease models. The recent discovery that certain transition metal carbonyls function as CO-releasing molecules (CO-RMs) in biological systems highlighted the poten...
متن کاملAntithrombotic properties of water-soluble carbon monoxide-releasing molecules.
OBJECTIVE We compared the antithrombotic effects in vivo of 2 chemically different carbon monoxide-releasing molecules (CORM-A1 and CORM-3) on arterial and venous thrombus formation and on hemostatic parameters such as platelet activation, coagulation, and fibrinolysis. The hypotensive response to CORMs and their effects on whole blood gas analysis and blood cell count were also examined. MET...
متن کاملCerebroprotective effects of the CO-releasing molecule CORM-A1 against seizure-induced neonatal vascular injury.
Endogenous CO, a product of heme oxygenase activity, has vasodilator and cytoprotective effects in the cerebral circulation of newborn pigs. CO-releasing molecule (CORM)-A1 (sodium boranocarbonate) is a novel, water-soluble, CO-releasing compound. We addressed the hypotheses that CORM-A1 1) can deliver CO to the brain and exert effects of CO on the cerebral microvasculature and 2) is cerebropro...
متن کامل